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LARGE-SCALE MOLECULAR DYNAMICS SIMULATIONS OF
SHOCK-INDUCED PLASTICITY, PHASE TRANSFORMATIONS,

AND DETONATION

Timothy C. Germann
�

AppliedPhysicsDivision (X-7),LosAlamosNationalLaboratory, LosAlamos,NM 87545

Abstract. Moderncomputersenableroutinemultimillion-atommoleculardynamicssimula-
tionsof shockpropagationin solidsusingrealisticinteratomicpotentials,andoffer a direct
insightinto theatomisticprocessesunderlyingplasticity, phasetransformations,andthedet-
onationof energetic materials. Past, present,andprospectsfor future simulationswill be
discussedin thecontext of prototypicalsystemsfor eachof thesethreeclassesof problems.
Initial samplesrangingfrom perfectsinglecrystals,to thosewith specificisolateddefects,to
full-fledgedpolycrystallinematerialswill beconsidered.

INTRODUCTION

Atomistic simulationmethods,particularlynon-
equilibriummoleculardynamics(MD), offer agreat
andlargely untappedpotentialfor the investigation
of shockwaveprocessesin solids[1]. Only recently
has it beenconclusively demonstratedthat large-
scaleMD simulationscan give steadyplastic (or
split elastic-plastic)waves with a rich nanostruc-
ture [2] that may be directly comparedwith ultra-
fast X-ray diffraction measurements[3]. Shock-
inducedphasetransformations(eithersolid-solidor
solid-melt),multiple shocks(including rampwave
loading), unloadingprocessessuch as rarefaction
shocks,spallation,and ejecta,and shock-induced
chemistryarejustafew of thephenomenafor which
MD simulationsover thecomingdecadeshouldbe
ableto providea greatdealof insight.

This paperwill briefly review someof therecent
achievementsusing classicalmoleculardynamics,
andthosewhich mayreasonablybeexpectedin the
nearfuture. Theuseof quantummoleculardynam-
ics techniques,including density-functionaland
tight-bindingmethods,to studyshock-compressed
�
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materials[4], is anotherpromisingfield,but will not
beconsideredfurther.

PROTOTYPICAL SYSTEMS

Three prototypical systemswill be discussed
here, representative of three classesof shock-
inducedbehavior in solids,namely(1) plasticity, (2)
polymorphicphasetransformations,and(3) detona-
tion of energeticmaterials.

Themajority of moleculardynamicssimulations
for solidshavefocusedonclose-packedmetals,rep-
resentedeitherby pair potentialssuchasLennard-
Jones6-12,or embeddedatommethod(EAM) po-
tentials[5], which addan embeddingterm depen-
dent on the local electrondensityto a pair poten-
tial. Holian and coworkers [6] first demonstrated
thatsteadyshockwavesin three-dimensionalsolids
couldbemodeledusingMD, with a transitionfrom
a purely elasticresponseto plastic flow when the
Hugoniot pressurejump is roughly equal to the
shearmodulus. Theseearly (ca. 1980) simula-
tions,with upto

�����
atoms,exhibitedslippage(i.e.,

stackingfaults) along one, or at most two, � 111�
planesfor shockstraveling in the 	 �
���
� direction.
With the great advancesin computerpower and
in parallelmoleculardynamicsalgorithms[7], Ho-
lian andLomdahl[2] demonstratedthat3-D simula-
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tionswith
�����

atomsarefeasibleonmoderate-sized
(12-CPU)multiprocessorcomputers. Thesestud-
iesconfirmedtheresultsof earliersimulations(e.g.,
regardingthelinear ��� vs. ��� Hugoniot,thethresh-
old for plasticity, . . . ), with patternsof intersecting
stackingfaultsbeinggeneratedonall four available
� 111� planes. Shortly thereafter, Zhakhovskĭı et
al. [8] showedthat smoothfine-grainedshockpro-
files couldalsobeobtainedusinga time-averaging
techniquewith muchsmallersamplesthanthespa-
tial averagingover large cross-sectionalsamples.
Furthersimulationshave investigatedthecrystallo-
graphicorientationdependencein both the elastic-
plastic[9] andmelting[10] regimes.

Recently, simulationshave beencarriedout us-
ing various EAM potentials for iron, to investi-
gatethe ����� phasetransformationundershock
loading [11]. It is ratherremarkablehow fast the
timescalefor this diffusionlessprocessis; for over-
driven shocksin perfectsinglecrystals,the bcc �
hcp transformationis basicallycompletewithin a
few lattice planes,althoughsubsequentgrain an-
nealingis observed over longer timescales.Since
thepublishedpotentialswereall fit to zero-pressure
data (or at best, an approximateRose“universal
equationof state” for the bcc phase),it is not sur-
prisingthatdetailsof theexperimentalHugoniotare
not quantitatively reproduced,especiallyabove the
transformationthreshold. But the fact that quali-
tative aspectssuchasthe bcc-hcporientationrela-
tionships,transformationkinetics,etc.,for different
shockdirectionsappearsto be independentof the
actualpotentialleadsusto believe that theserepre-
sentthe trueresponseof shock-compressedperfect
single-crystaliron.

The third and final classof behavior concerns
shock-inducedchemicalreactions,specificallydet-
onation.Reactiveempiricalbondorder(REBO)po-
tentialsdevelopedby Brenner, White, andcowork-
ers[12, 13] in the early1990sexhibit many of the
propertiesof condensedphaseexplosives,including
acritical flyer platevelocityfor initiation [13], deto-
nationvelocity independentof initiation conditions
[13], delayed(homogeneous)initiation for low ve-
locity impact[14], anda critical width for detona-
tion of 2-D ribbons[15]. All of thesestudies(as
well asthe presentwork) arefor the original 2AB
� A � + B � modelexothermicreaction,but shock

simulationsusingREBO potentialsfor ozone[16]
andhydrocarbons[17] havealsobeencarriedout.

In the remainderof this paper, we will discuss
past,present,andfutureMD simulationsfor eachof
thesethreesystemswith threetypesof initial sam-
ples:perfectsinglecrystals,singlecrystalswith iso-
lateddefects,andpolycrystallinematerials.

PERFECT SINGLE CRYSTALS

Single-crystalsimulationsarebeginning to pro-
vide quantitative predictionsaboutbehavior which
can be measuredat the macroscale. Holian and
Lomdahl [2] demonstratedthat with samplecross-
sectionsaslargeas

�������������
unit cells,quantitative

measurementsof thestackingfault densitycouldbe
madeand shown to closely follow the total volu-
metricstrain � ��� � � acrosstheshockfront. Further-
more,analysisof thesmoothstressprofilesobtained
by either time- or (in this case)space-averaging
shows that the strain ratedependenceon the pres-
surerise � is � "! ��#
$ # , in remarkablygoodagree-
mentwith experimentalmeasurementsfor metals.

Strachanand coworkers [18] have studied the
spallationof perfectcrystalsof bcc Ta and fcc Ni
usingEAM potentials. Although the samplesizes
were relatively small (10 to 20 thousandatoms),
they wereableto extract void volumedistributions
at differenttimeswhichexhibit apower-law behav-
ior %'&)("*'+,(.-0/ over several ordersof magni-
tude. The critical exponent13254
674 , which corre-
spondsto that for 3-D percolation.Similar studies
using larger sampleswith preexisting defectssuch
asvoids, inclusions,or grain boundarieswould be
of greatinterestsincespall failure at lesserstrain
rates(closerto mostexperiments)couldberealized.

With improvedpotentialmodels,phasetransfor-
mationsimulationsmayreachasimilar level of pre-
dictive capacityas well. However, MD simula-
tionsof detonationwill likely bemorevaluablein a
strictly modelcapacity, sincetypical reactionzones
(8 m to mm) of actualexplosivesare well beyond
thecapabilityof MD simulationsfor atleastanother
decade.SimulationsusingREBOmodelssubjected
to flyer plate[13, 14] or supportedpiston[12, 16]
impacthavebeencarriedout in 2D and3D; herewe
focusonour 2D supportedpistonresults.Themea-
suredHugoniot is shown in Fig. 1. At very slow
piston velocities(below about300 m/s), a steady
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FIGURE1: MeasuredHugoniot(shockvelocityvs.par-
ticle velocity) for the2-D AB crystal.

elasticwave is maintained,but soonthereafterone
findssplit elastic-plasticstructure(Fig. 2) followed
by a fluid region dueto the extremelylow melting
pointof theAB model.For pistonvelocitiesgreater
than 2 1.6 km/s, a steady-statedetonationis initi-
ated.Velocitiesjust above this thresholdclearly in-
dicatethatinitiation takesplaceby homogeneneous
nucleationfar behindan intial compressive wave,
which is subsequentlyovertaken by the detonation
wave. The detonationvelocity is nearly constant,! 9.5 km/s, until for �0�;: 4.5 km/s an overdriven
detonationwaveexists.

STUDIES OF ISOLATED DEFECTS

Our simulationsindicatethat point defectssuch
asvacanciesareinsufficiently strongstressconcen-
trators to initiate plastic deformation[2] or phase
transformationsbelow the perfect single-crystal
threshold.Similarly, replacingan AB moleculein
the molecularsolid by anA < radicalleadsto a few
localizedreactionsfor �0�>= 1.6 km/s,but doesnot
seemto lower thedetonationthresholdappreciably
(a few percentat most).

However, moreextendeddefectsor grainbound-
ariesmay readily act as heterogeneousnucleation

FIGURE 2: Shockwave in a 2D AB molecularcrystal
with ?�@BADCFE GIH km/s (i.e., below thedetonationthresh-
old), with moleculescoloredby theirorientation.Theun-
shockedherringbonelatticeis atthetop,andatthebottom
is theshockedstatecorrespondingto a (highly defective)
90J rotationof theoriginal lattice.An intermediateelastic
precursorconsistsof diagonallines of singlemolecules
which have rotatedby varyingamounts,but returnto the
original configurationuponrelease.
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FIGURE3: Heterogeneousnucleationof detonationata
10nmradiuscircularvoid, 6 psafteranonreactiveshock
wave reachesthe left sideof the void. At later times,a
steadyplanardetonationwaveis obtained.Atomsarecol-
oredaccordingto their bonds,with bluefor productsand
blackfor multiply bondedatoms.

FIGURE 4: Polycrystalline2-D Lennard-Jonessample
(2 million atoms)before(top) andafter (bottom)shock
compressionfrom the left side. Atoms are coloredac-
cordingthethelocalorientationof thehexagonallattice.

sites, as demonstratedby using a warped piston
to initiate plasticflow in fcc Lennard-Jonesium[2]
well below the perfect-crystalthreshold. Simula-
tionsof bcciron with a missinghalf-planeof atoms
(whichcanrelaxinto aparallelpairof edgedisloca-
tion lines) alsoshow thatphasetransformationnu-
cleationmaybeinducedbelow theusualthreshold.

Oneimportantquestionwhich canbe addressed
usingsuchsimulationsis whatrole varioustypesof
defects(voids, inclusions,dislocations,. . . ) play
in “hot spot” initiation of detonation.For instance,
we have found that large voids in a 2D AB crystal
can substantiallylower the perfect-crystaldetona-
tion threshold,from 1.6km/sto around1.1km/sfor
10nmradiuscircularvoids.An exampleof thispro-
cessis shown in Fig. 3 for � �LK 1.38km/s.Onecan
clearlyseeinitiation in thiscaseoccuringdueto the
impactof aconvergingjet of atomsejectedfrom the
opposidesidesof thevoids,andnot by collision of
thetwo wavespropagatingaroundthevoid.

POLYCRYSTALLINE MATERIALS

We have recentlybegun carryingout somepre-
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FIGURE 5: Polycrystallineiron sampleat 2.2 ps, 4.5
ps, and9.5 ps after impactwith a pistonat the left (not
shown). Thesamplecontains32 grainsanda total of 24
million atoms;thesizebeforeshockcompressionwas58
nm M 58 nm M 87 nm. Atoms are color-codedby the
numberof neighborsN within 2.75Å: theunshockedbcc
sample( NOAQP ) is grey, uniaxially compressedbcc( NRAS C ) is blue,thetransformedclose-packedregion( NBA SUT )
is red, andothervalues(colors)primarily correspondto
grainandtwin boundaries.

liminary simulationsof nanocrystallinematerials.
Thedifficultiesherearetwofold: (1) sampleprepa-
ration thatgeneratesa realisticdistribution of grain
sizes,orientations(texturing), andrelative orienta-
tions (grain boundaryenergies); and (2) samples
sufficiently largethatmany grainsareaveragedover
in the transversedirections,andthat a steady-state
shockwaveisachievedin thelongitudinaldirection.

A two-dimensionalexampleis shown in Fig. 4.
The sampleis generatedwith a Voronoi construc-
tion: we randomlyselect80 grain centerpositions
andorientations,andfill eachgrainwith a triangu-
lar latticeof thegivenorientationuntil themidpoint
betweentwo grain centersis reached.This initial
stateis thenannealedfor VB& ��� # * timesteps(corre-
spondingto a few ps) to at leastpartially relax the
grain boundaries,beforebeingsubjectedto shock
loading.In thiscasethepistonvelocity is below the
perfect-crystalHugoniot elastic limit (at least for
the varioustriangularlatticeorientationswhich we
have studied),but animationsclearlyshow disloca-
tionspropagatingfromthegrainboundariesthrough
eachcrystallite. As seenin the bottom panelof
Fig. 4, this processgreatly distortsthe previously
lineargrainboundaries,andleavesbehinda signif-
icant dislocationdensityin severalof the grainsas
well. The shockwave is considerablybroadened
due to the distribution of shockvelocitiesin each
grain andthescatteringoff of grain boundaries,so
even for this 2 million-atomsystem,a steady-state
shockprofile is notyet attained.

Suchsimulationsmayalsobecarriedout in 3-D,
but simulationsizesof W �
� � atomsarenecessary
to have a reasonablenumberof grainsand suffi-
ciently smallsurface-to-volumeratio of eachgrain.
Onepreliminaryexamplefor iron is shownin Fig.5,
wherea32-graininitial configurationwasgenerated
in a mannersimilar to that for the previous exam-
ple,andthendrivenat � ��K 725m/stowardsamo-
mentummirror [2] at the left. For this particular
EAM potential, this piston velocity is about15%
below the perfect-crystaltransformationthreshold
for shocksin the 	 �����X� direction[11]. Again,wesee
nucleationof thebcc � hcptransformationatgrain
boundaries,whichthenslowly proceedsinwardsfor
eachgrain. As before,a steadyshockprofile is not
yet attained,but in this casethe numberof grains
in eachtransversecross-sectionis too small to ever
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expectsteady-statebehavior.

CONCLUSIONS

Theprospectsarevery goodfor usingMD sim-
ulationson perfector nearlyperfectcrystalsto sys-
tematically study shock phenomena,particularly
the effects of variousheterogeneities,in a quanti-
tative capacityfor metalplasticityandphasetrans-
formationprocesses.On the otherhand,energetic
material and polycrystal studiesare more likely
to remain in a qualitative, model-building capac-
ity for the forseeablefuture. Even

�
�FY
atomsare

not enoughto representa micron-scalecubeof ma-
terial, so direct MD simulationsof realistic poly-
crystallinesampleswith grainsizeson theorderof�
� 8 m are impractical,andunnecessary. Insteada
morebeneficialapproachwould involve usingMD
simulationsto calibratethe governing interactions
for models(suchas the discreteelementmethod)
usedin mesomechanicalstudiesof shockcompres-
sion[19], thusproviding alink betweeninteratomic
potentialson the sub-nanometerscaleand meso-
scopicbehavior on thesub-millimeterscale.
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